Fuzzy ARTMAP Based Neural Networks on the GPU for High-Performance Pattern Recognition

نویسندگان

  • Mario Martínez-Zarzuela
  • Francisco Javier Díaz Pernas
  • Antonio Tejero-de-Pablos
  • F. Perozo-Rondón
  • Miriam Antón-Rodríguez
  • David González Ortega
چکیده

In this paper we introduce, to the best of our knowledge, the first adaptation of the Fuzzy ARTMAP neural network for its execution on a GPU, together with a self-designed neural network based on ART models called SOON. The full VisTex database, containing 167 texture images, is proved to be classified in a very short time using these GPU-based neural networks. The Fuzzy ARTMAP neural network implemented on the GPU performs up to ×100 times faster than the equivalent CPU version, while the SOON neural network is speeded-up by ×70 times. Also, using the same texture patterns the Fuzzy ARTMAP neural network obtains a success rate of 48% and SOON of 82% for texture classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

attern recognition for sensor array signals using Fuzzy ARTMAP

A Fuzzy ARTMAP classifier for pattern recognition in chemical sensor array was developed based on Fuzzy Set Theory and Adaptive Resonance Theory. In contrast to most current classifiers with difficulty in detecting new analytes, the Fuzzy ARTMAP system can identify untrained analytes with comparatively high probability. And to detect presence of new analyte, the Fuzzy ARTMAP classifier does not...

متن کامل

A fuzzy ARTMAP nonparametric probability estimator for nonstationary pattern recognition problems

An incremental, nonparametric probability estimation procedure using the fuzzy ARTMAP (adaptive resonance theory-supervised predictive mapping) neural network is introduced. In the slow-learning mode, fuzzy ARTMAP searches for patterns of data on which to build ever more accurate estimates. In max-nodes mode, the network initially learns a fixed number of categories, and weights are then adjust...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Prediction of Gain in LD-CELP Using Hybrid Genetic/PSO-Neural Models

In this paper, the gain in LD-CELP speech coding algorithm is predicted using three neural models, that are equipped by genetic and particle swarm optimization (PSO) algorithms to optimize the structure and parameters of neural networks. Elman, multi-layer perceptron (MLP) and fuzzy ARTMAP are the candidate neural models. The optimized number of nodes in the first and second hidden layers of El...

متن کامل

Supervised Learning of Fuzzy ARTMAP Neural Networks Through Particle Swarm Optimization

In this paper, the impact on fuzzy ARTMAP performance of decisions taken for batch supervised learning is assessed through computer simulation. By learning different realworld and synthetic data, using different learning strategies, training set sizes, and hyperparameter values, the generalization error and resources requirements of this neural network are compared. In particular, the degradati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011